Graf parţial
Fie graful G=(X,U). Se numeşte graf parţial al lui G, un graf G1=(X,V), cu V inclus în U. Altfel spus, un graf parţial al lui G este chiar G, sau se obţine din G, păstrând toate vârfurile şi suprimând nişte arce.
Fie graful G=(X,U). Se numeşte graf parţial al lui G, un graf G1=(X,V), cu V inclus în U. Altfel spus, un graf parţial al lui G este chiar G, sau se obţine din G, păstrând toate vârfurile şi suprimând nişte arce.
Se consideră graful G=(X, U), în care X={1, 2, 3, 4, 5, 6} şi U={(2,1), (1, 3), (4, 3), (3, 5), (6,4), (5, 6).
Graful parţial al lui G este G1=(X, V), în care X={1, 2, 3, 4, 5, 6} şi V={(2, 1), (3, 2), (4, 3), (6, 4), (5, 6)}.
Graful parţial al lui G este G1=(X, V), în care X={1, 2, 3, 4, 5, 6} şi V={(2, 1), (3, 2), (4, 3), (6, 4), (5, 6)}.
Subgraf
Fie graful G=(X, U). Un subgraf al lui G este un graf G2=(Y, V), unde Y inclus in U, iar V va conţine toate arcele din U, care au ambele extremităţi în Y. Altfel spus, un subgraf al unui graf se obţine eliminând nişte noduri şi arcele incidente acestor noduri.
Se consideră graful G=(X, U), în care X={1, 2, 3, 4, 5, 6} şi U={ (2, 1), (1, 3), (3, 2), (4, 3), (3, 5), (6, 4), (5, 6).
Subgraful lui G este G2=(Y, V), în care Y={3, 4, 5, 6} şi V={(4, 3), (3, 5), (6, 4), (5, 6).